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Abstract— We construct a dynamic version of the VCG
pivot mechanism applicable to private value environments in
which the allocation space in each period is random. A key
characteristic of this setting is that while the allocations chosen
by the coordinator in each stage are based on the actual
realization of the random set of feasible allocations, the agent’s
reports in each step are made prior to this realization. This adds
an additional layer to the problem, as players reporting their
type now will take into account the distributional characteristics
of the feasible allocation sets. We consider a modified social
welfare function, in which “the public”, regarded as a non-
player, also receives utility from allocation decisions. For both
the finite and the infinite horizon case, we construct mechanisms
that satisfy a suitable notion of incentive compatibility and
individual rationality and are weak budget balanced. Finally,
we outline how our mechanisms may be applied to the problem
of dynamically allocating random goods to a group of players
that have private valuations for different item bundles.

I. INTRODUCTION

Mechanisms that implement efficient social choice func-
tions in environments in which participants have private
information about their preferences have been studied ex-
tensively in the economics literature. A well-known class
of such mechanisms are the Vickrey-Clarke-Groves (VCG)
mechanisms [1], [2], [3]. VCG mechanisms have been ex-
tended to the case of incomplete information in [4], [5],
where incentive compatibility is formulated in terms of
Bayesian-Nash equilibria. The pivot mechanism [6] is a
VCG mechanism in which the players’ payoffs equal their
respective marginal contributions to the social surplus.

In [7] the idea of the pivot mechanism has been gener-
alized to a dynamic environment with private information.
The underlying idea is to design an inter-temporal sequence
of transfer payments that allows each player to receive her
“flow marginal contribution” in each period. The information
asymmetry is with respect to the players’ types: at each
time, each player privately observes her type. The dynamic
pivot mechanism constructed in [7] is efficient, individually
rational and ex post incentive compatible. In the related
work [8], the authors design an efficient, budget-balanced
and Bayesian-Nash incentive compatible dynamic mecha-
nism (which is generally not individually rational). Dynamic
mechanism for revenue maximization are investigated in [9].

In this paper, we extend the ideas from [7] in a number of
different directions. Firstly, we allow for a publicly observed
state that affects payoffs as well as type dynamics. Secondly,
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we consider a setting in which allocation decisions do not
only affect the players, but also create utility for the “public”,
which does not participate in the mechanism. The mechanism
aims to maximize the sum of the player utilities and the
“public utility”. This can be interpreted as a dynamic version
of an affine maximizer problem [10]. Most importantly, we
consider random allocation spaces. More precisely, we are
interested in problems in which the set of feasible allocations
in each period depends on some exogenous random vari-
able, which is realized only after the players have reported
their types. The coordinator observes the realization of this
random variable (thus the set of feasible allocations), and
chooses an allocation such as to maximize social welfare.
The players, however, when reporting their types, need to
take the distribution of the random variable into account.
Finally, we also consider the finite horizon problem, where it
is possible to account for player utilities, state dynamics and
distributions of feasible allocation sets that are time-varying.

Our main contribution is to construct dynamic direct
revelation mechanisms for both the finite and infinite horizon
case that satisfy suitable notions of incentive compatibility
and individual rationality in a setting where the feasible
allocation sets in each period are random and unknown to the
players at the time they report their types. This is relevant in
engineering problems in which allocation decisions have to
be made right after realization of the randomness determining
the feasible allocations. One such example is the control of
independent storage providers to take up power imbalances in
the grid – the dispatch decision has to be made immediately
after the power imbalance becomes known.

As an example of a setting in which mechanisms of the
type we construct are necessary, we consider the problem of
dynamically allocating random items to a group of rational
players who have private valuations for different bundles.

Outline: Section II describes our setup. The welfare max-
imization problem is discussed in section III. Notions of
incentive compatibility and individual rationality are for-
mulated in section IV. Our main results are contained in
section V; there we propose our mechanisms and analyze
their properties. Section VII gives an illustrative example
and section VIII concludes the paper.

II. PRELIMINARIES

Consider a discrete-time, private value setting with a
finite set N = {1, . . . , N} of players. The stage utility
of player i ∈ N in period t depends on the player’s type
θi,t ∈ Θi, a publicly observed state θ0,t ∈ Θ0, the publicly
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observed allocation decision1 at ∈ At and a monetary
transfer pi,t ∈ R. Here At is the set of feasible allocation
decisions in period t. The type spaces Θ0 and Θi for i ∈ N
are treated as measurable spaces and assumed to be common
knowledge. Define Θ := ×I

i=0Θi, Θ−i := ×j 6=iΘj and
θt := (θ0,t, . . . , θI,t). We consider both finite and infinite
horizon problems, i.e. t ∈ {0, . . . , T} with T ≤ ∞.

The stage utility function ui,t of player i in period t is
quasilinear in the monetary transfer and given by

ui,t(at, pi,t, θ0,t, θi,t) = vi,t(at, θ0,t, θi,t)− pi,t (1)

Here pi,t is the payment by player i to the coordinator in
period t. If T <∞ each player i receives a terminal utility
of the form gi(θ0,T , θi,T ) in period T .

Our goal is to construct efficient mechanisms for a slightly
more general problem than the classic welfare maximization
problem: We assume that, besides providing utility to the
players, the coordinator’s decisions may also benefit “the
public”, which is not a participant in the mechanism and
has no way of influencing it. For example, in problems of
relatively short time scales in power markets, the public
could represent the taxpayer, while the players could be
market participants. The public’s utility is described by a
utility function wt(at, θ0,t). If T =∞, we assume the utility
functions to be time-invariant, i.e. vi,t(·, ·, ·) = vi(·, ·, ·) and
wt(·, ·) = w(·, ·) for all t ≥ 0. All utility functions are
assumed to be common knowledge in period t = 0.

Let (Ω,F , P ) be a probability space, and let (Z,Z) and
(A,S) be measurable spaces. The feasible allocation sets
At are parametrized by independent2 random variables Zt :
Ω→ Z with distributions µZt

(we require the Zt to be i.i.d.
if T = ∞). A set-valued function (i.e. a correspondence)
A : Z � A maps the realization zt of the random variable
Zt to a set of feasible allocations At = A(zt) ⊂ A in S,
where A is the allocation space. In particular, At, the set of
feasible allocations in period t, is random. This randomness
is a major difference between our model and the one in [7],
which assumes At = A to be fixed and known to every
participant in period t = 0. The distributions µZt

and the
correspondence A are assumed common knowledge.

There are many situations in which randomness of the
above form may arise. The general class of problems is the
allocation of the outcome of some random event across a
group of players. In section VII we give an example of a
dynamic combinatorial auction, in which randomly realized
goods need to be distributed among different players that
have private valuations for bundles of items.

Type θi of player i is described by a time-homogeneous3

Markov process on the respective type space Θi. For each
player i ∈ N , a common prior Fi(θi,0) describes the belief
about her initial state θi,0. We work in an independent

1The term “allocation” is borrowed from the auction theory literature;
more generally at is simply the decision the coordinator makes in period t.

2This is w.l.o.g. as one could consider inter-temporal correlation of the
random variables by suitably augmenting the state space Θ0.

3We could also consider time-inhomogeneous kernels in the finite horizon
case, but omit this for brevity.

Fig. 1. Information pattern of the mechanism (not including transfers)

type setting: A player’s type in period t together with
the allocation at and the state θ0,t defines a probability
distribution for the players’s type in period t+ 1, described
by a stochastic kernel Fi(θi,t+1; θ0,t, θi,t, at). Similarly, the
evolution of θ0 is described by a kernel F0(θ0,t+1; θ0,t, at).
Kernels and common priors are assumed to be independent
across players and common knowledge in period t = 0.

At the beginning of each period t, each player i observes
her type θi,t privately, and all players and the coordinator
observe the public state θ0,t. Then each player i reports a
type ri,t to the coordinator (where in general ri,t 6= θi,t, i.e.
the players may choose to lie). Then the random variable Zt

is realized and observed publicly. At the end of each period,
an allocation at ∈ A(zt) is chosen by the coordinator and
payoffs are realized. Fig. 1 depicts this information pattern.

Remark 1: In our independent types setting, the type
θi,t+1 of player i in period t+1 is conditionally independent
of θj,t for j 6= i given the decision at and the state θ0,t.
This conditional independence is essential, if it did not hold
then the problem would be significantly more difficult. In
particular, players could try to affect the evolution of other
players’ types through that of their own type.

III. SOCIAL WELFARE MAXIMIZATION

We are interested in efficient mechanisms that maximize
social welfare. If T = ∞ we assume all players and the
public have a common discount factor 0 < δ < 1. The so-
cially efficient policy is obtained by maximizing the expected
sum (discounted if T =∞) of the players’ utilities and the
public’s utility over the whole horizon. This can be seen as
a dynamic version of an affine maximizer problem [10].

The information structure of the problem is such that
the allocation at in period t in fact is decided on by
the coordinator with respect to the known set of feasible
allocations At = A(zt) ⊂ A. For each realization z ∈ Z, the
coordinator’s decision in period t is a measurable function
at(z) : Θ → A(z). In order to be able to provide the
correct incentives, the coordinator must be able to commit
to allocation policies:

Definition 1: An allocation policy α is a measurable map
α : Z×Θ→ A.
An allocation policy α is admissible if α(z, θ) ∈ A(z) for all
(z, θ) ∈ Z×Θ. Let A be the set of all admissible policies.

Let F := ×N
j=0Fi. In order to ensure well-posedness,

we assume the following uniform bounds on the expected
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absolute value of the utilities.
Assumption 1: There exists K <∞ such that for all t ≤

T − 2, i ∈ N , θ ∈ Θ, z ∈ Z, a ∈ A(z) and α ∈ A,
EZt+1

[∫
|vi,t+1(α(Zt+1, θ

′), θ′0, θ
′
i)| dF (θ′; a, θ)

]
< K and∫

|gi(θ′0, θ′i)| dF (θ′; a, θ) < K. If T =∞ ∃ K∞ <∞ such
that ∀ i ∈ N , θ ∈ Θ, z ∈ Z, a ∈ A(z) and α ∈ A,
EZt+1

[∫
|vi(α(Zt+1, θ

′), θ′i)| dF (θ′; a, θ)
]
< K.

Assumption 2: There exists Kw < ∞ such that for all
t < T , θ ∈ Θ, z ∈ Z, a ∈ A(z) and α ∈ A,
EZt+1

[∫
|wt+1(α(Zt+1, θ

′), θ′0)| dF (θ′; a, θ)
]
< Kw.

After Zt = zt has been realized in period t, the maximal
expected social utility to go in the finite horizon case can,
under Assumptions 1 and 2, be written as

Wt(θt; zt) = sup
at∈A(zt),{αs}T−1

s=t+1

{
Jt(at, θt)

+ E
[ ∑T−1

s=t+1Js(αs(Zs, θs), θs) +
∑N
i=1 gi(θ0,T , θi,T ) | θt, at

]}
(2)

where Jt(at, θt) = wt(at, θ0,t) +
∑N

i=1 vi,t(at, θ0,t, θi,t) is
the social stage utility in period t and the expectation is taken
over the random variables Zs for s > t and the evolution of
θ0,t and θi,t, described by the kernels F0 and Fi for i ∈ N .
For T =∞, we have under Assumptions 1 and 2 [11]:

W∞(θt; zt) = sup
at∈A(zt),{αs}∞s=t+1

{
J(at, θt)

+ E
[ ∑∞

s=t+1J(αs(Zs, θs), θs) | θt, at
]} (3)

where J(at, θt) = w(at, θ0,t) +
∑N

i=1 vi(at, θ0,t, θi,t).
Our main assumption is the following:
Assumption 3: There exist policies α∗T = {α∗t }T−1

t=0 and
α∗∞ = {α∗t }∞t=0 that maximize (2) and (3), respectively.

Assumption 3 gets rid of a number of technical difficulties,
in particular potential measurability issues. While these ques-
tions are interesting and relevant, we will not consider them
in any detail in this paper, and instead focus on designing
dynamic mechanisms. In fact, note that Assumption 3 is
needed if we are to hope for an efficient mechanism to exist:
If the welfare maximization problem under full information
does not admit an optimal policy, then we should not
expect to be able to construct a mechanism implementing
its solution in the incomplete information setting.

Remark 2: One case in which Assumption 3 is satisfied
is when Θ and Z are finite, the allocation spaces A(z)
are compact for all z ∈ Z and the utility functions are
continuous. In general, additional assumptions are required
to ensure that optimal policies exist [11].

Under Assumption (3), one may express (2) using dynamic
programming recursively as the following Bellman equation:

Wt(θt; zt) = max
at∈A(zt)

{
Jt(at, θt)

+ E
[
Wt+1(θt+1;Zt+1) | θt, at

]} (4)

with terminal condition WT (θT ; zT ) =
∑N

i=1 gi(θ0,T , θi,T ).
Similarly, (3) can be written as

W∞(θt; zt) = max
at∈A(zt)

{
J(at, θt)

+δ E
[
W∞(θt+1;Zt+1) | θt, at

]} (5)

IV. DYNAMIC MECHANISMS FOR RANDOM
ALLOCATION SPACES

We restrict our attention to direct revelation mechanisms4

that implement the socially efficient policies α∗T and α∗∞,
respectively. A dynamic direct revelation mechanism for
random allocation spaces (from now on referred to simply
as “mechanism”) in every period t asks every player i to
report her current state θi,t. In general, ri,t 6= θi,t, i.e. the
report ri,t need not be truthful. The public history at the
beginning of period t is the sequence of observed states
and reports, rs = (θ0,s, r1,s, . . . , rN,s), realizations of the
random variable Zs, and allocation decisions as, and is
denoted by ht = (r0, Z0, a0, . . . , , rt−1, Zt−1, at−1). Simi-
larly, hi,t = (θi,0, r0, Z0, a0, . . . , θi,t−1, rt−1, Zt−1, at−1) is
player i’s private history at the beginning of period t. Denote
by Ht and Hi,t the set of possible public and private (of
player i) histories at the beginning of period t, respectively.

Definition 2: A dynamic direct revelation mechanism for
random allocation spaces is characterized by sequences of
allocation policies α = {αt}T−1

t=1 and monetary transfers p =
{pt}T−1

t=1 , where αt ∈ A and pt : Ht ×Θ→ RN .
A mechanism as in Definition 2 is efficient if αt = α∗t
for each t, i.e. if the allocation policy is a socially optimal
policy as in Assumption 3. A reporting strategy for player i
in period t is a mapping from player i’s private history to
the state space: ri,t : Hi,t → Θi. Note that at the time the
transfers pt are made, the random variable Zt has already
been realized. In particular, the pi could well be a function
of Zt. However, players can choose their reports based only
on their private histories Hi,t, which do not include Zt.
As players’ incentives should not be based on information
unavailable to them, the transfers pt do not depend on Zt.

Remark 3: One may be tempted to reformulate the dy-
namic problem as a completely contingent plan, i.e. by
embedding it into a static problem and then invoking standard
results from the static mechanism design literature. However,
this view does not account for additional strategic possibil-
ities players have in the dynamic model where information
arrives over time. In particular, player i in period t bases her
report on both her private information and the past reports of
other agents. As a result, truth-telling in general fails to be a
weakly dominant strategy for the static mechanism. Another
issue is that the participation constraint must be satisfied not
only in the initial period (ex ante), but after each period.

A. Incentive Compatibility

Define θ−i,t := (θ0,t, . . . , θi−1,t, θi+1,t, . . . , θN,t) and
r−i,t := (θ0,t, r1,t, . . . , ri−1,t, ri+1,t, . . . , rN,t). For a given
mechanism, a player using reporting strategy ri = {ri,t}T−1

t=0

given strategies r−i = {r−i,t}T−1
t=0 of the other players

expects an overall utility of

E
[∑T−1

t=0

(
vi,t(α

∗(Zt, rt), θ0,t, θi,t)− pi,t(ht, rt)
)
+ gi(θ0,T , θi,T )

]
in the finite horizon case and

E
[∑∞

t=0 δ
t
(
vi(α

∗(Zt, rt), θ0,t, θi,t)− pi,t(ht, rt)
)]

4See [12] for a discussion of the revelation principle in dynamic games.
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in the infinite horizon case. Note that unlike in (2) and (3),
the expectations above are taken also over the random
variable Zt, as players choose their reports prior to the
realization of Zt. For a given efficient mechanism {α∗,p}
and reporting strategies r−i, let Vi,t(hi,t) and Vi,∞(hi,t) be
the respective finite and infinite horizon value functions of
player i, i.e. the expected utilities to go under the optimal
reporting strategy:

Vi,t(hi,t) = max
ri,t∈Θi

E
[
vi,t(α

∗
t (zt, ri,t, r−i,t), θ0,t, θi,t)

− pi,t(ht, (ri,t, r−i,t)) + Vi,t+1(hi,t+1)
] (6)

Vi,∞(hi,t) = max
ri,t∈Θi

E
[
vi(α

∗
t (zt, ri,t, r−i,t), θ0,t, θi,t)

− pi(ht, (ri,t, r−i,t)) + δ Vi,∞(hi,t+1)
] (7)

We can now define suitable notions of incentive compati-
bility for mechanisms of the above form.

Definition 3: An efficient dynamic mechanism for random
allocation spaces is stage-wise ex post incentive compatible if

EZt

[
vi,t(α

∗
t (Zt, θt), θ0,t, θi,t)− pi,t(ht, θt) + Vi,t+1(hi,t+1)

]
≥ EZt

[
vi,t(α

∗
t (Zt, ri,t, θ−i,t), θ0,t, θi,t)

− pi,t(ht, (ri,t, θ−i,t)) + Vi,t+1(hi,t+1)
]

(8)

for all i = 1, . . . , N , θt ∈ Θ, ri,t ∈ Θi, t = 0, . . . , T − 1
and histories hi,t ∈ Hi,t.

Definition 4: An efficient dynamic mechanism for random
allocation spaces is periodic ex post incentive compatible if

EZt

[
vi(α

∗
t (Zt, θt), θ0,t, θi,t)− pi(ht, θt) + δ Vi,∞(hi,t+1)

]
≥ EZt

[
vi(α

∗
t (Zt, ri,t, θ−i,t), θ0,t, θi,t)− pi(ht, (ri,t, θ−i,t))

+ δ Vi,∞(hi,t+1)
]

(9)

for all i, θt ∈ Θ, ri,t ∈ Θi, t ≥ 0 and histories hi,t ∈ Hi,t.
Definitions 3 and 4 characterize a mechanism as incentive
compatible if truth-telling is a best response in expectation
(w.r.t the random variables Zt), regardless of the history and
the current state of the other players, provided that all other
players report truthfully. Note that without the expectation
over Zt, Definition 4 would be the notion of ex post incentive
compatibility from [7]. The qualifications “stage-wise” and
“periodic” mean that incentive compatibility is ex post w.r.t.
to all signals received until period t (not including Zt),
but not w.r.t to signals received in later periods. This is
because the additional information revealed in future periods
will generally render the expectation-maximizing decision
suboptimal in hindsight.

Remark 4: Observe that a stage-wise / periodic ex post
incentive compatible mechanism guarantees that a reporting
strategy profile of the agents is an equilibrium for all possible
beliefs about the agent types. The assumption that the
distributions µZt and the kernels Fi are common knowledge
on the other hand is crucial.

B. Individual Rationality

In a similar way, we can define suitable notions of individ-
ual rationality. For this, we will need to consider the social

utilities in the absence of player i:

W−i,t(θt; zt) = sup
at∈A(zt),{αs}T−1

s=t+1

{
J−i,t(at, θt)

+ E
[∑T−1

s=t+1 J−i,s(αs(Zs, θs), θs) +
∑
j 6=i gj(θ0,T , θj,T ) | θt, at

]}
(10)

with J−i,t(at, θt) = wt(at, θ0,t)+
∑N

j 6=ivj,t(at, θ0,t, θj,t) and

W−i,∞(θt; zt) = sup
at∈A(zt),{αs}∞s=t+1

{
J−i(at, θt)

+ E
[∑∞

s=t+1J−i(αs(Zs, θs), θs) | θt, at
]} (11)

with J−i(at, θt) = w(at, θ0,t) +
∑N

j 6=ivj(at, θ0,t, θj,t).
Denote the socially optimal policies when player i is

excluded from the mechanism by α∗−i,T = {α∗−i,t}
T−1
t=0 and

α∗−i,∞ = {α∗−i,t}∞t=0, respectively.
Suppose now that after each history ht, each player may

permanently opt out from the mechanism. Let Oi,t(hi,t)
(Oi,∞(hi,t)) be the expected overall utility player i receives
if she opts out, i.e. if the socially efficient policy α∗−i,T
(α∗−i,∞) for the remaining players is implemented. For a
player i to have an incentive to continue participating in the
mechanism, her expected remaining overall utility must be
at least as high as Oi,t(hi,t) (Oi,∞(hi,t)). This motivates the
following definitions:

Definition 5: A dynamic mechanism for random alloca-
tion spaces is stage-wise ex post individually rational if
Vi,t(hi,t)≥Oi,t(hi,t) for all hi,t∈Hi,t and all 0 ≤ t < T .

Definition 6: A dynamic mechanism for random allo-
cation spaces is periodic ex post individually rational if
Vi,∞(hi,t)≥Oi,∞(hi,t) for all hi,t∈Hi,t and all t ≥ 0.

V. THE MECHANISM

In this section, we construct efficient dynamic direct reve-
lation mechanisms for feasible allocation spaces, for both the
finite horizon and infinite horizon problem. It is well known
that, even in the static case with quasi-linear preferences, it
is impossible to construct a Bayesian-Nash incentive com-
patible mechanism that achieves efficiency, (strong) budget
balance and (interim) individual rationality [13]. As in [7],
we will construct mechanisms that, besides efficiency and
incentive compatibility (cf. Definitions 3 and 4), ensure
individual rationality (cf. Definitions 5 and 6), but which
are in general not (strongly) budget balanced.

A. Marginal Contributions

The (expected) marginal contribution Mi,t(θt) of player i
in period t is the expected utility she contributes to society:

Mi,t(θt) := EZt
[Wt(θt;Zt)−W−i,t(θt;Zt)] (12)

If T =∞ this is a stationary quantity:

Mi,∞(θt) := EZt [W∞(θt;Zt)−W−i,∞(θt;Zt)] (13)

One of the key observations of [7] is that if a player can
secure her marginal contribution in every continuation game
of the mechanism, then she should be able to incur her flow
marginal contribution mi,t(θt) (mi,∞(θt)) in every period.

928



The respective flow marginal contributions in the setting of
random feasible allocation sets are defined by

mi,t(θt) = Mi,t(θt)− E [Mi,t+1(θt+1) | θt] (14)

mi,∞(θt) = Mi,∞(θt)− δ E [Mi,∞(θt+1) | θt] (15)

To alleviate notational burden, define ℵ∗t = α∗t (Zt, θt) and
ℵ∗−i,t = α∗−i,t(Zt, θ−i,t). Using (12) and (13), respectively,
the flow marginal contributions can be expressed as

mi,t(θt) = E
[
Jt(ℵ∗t , θt)− J−i,t(ℵ∗−i,t, θt)

+
(
E
[
W−i,t+1(θt+1, zt+1) | ℵ∗t , θt

]
− E

[
W−i,t+1(θt+1, zt+1) | ℵ∗−i,t, θt

])
| θt
] (16)

mi,∞(θt) = E
[
J(ℵ∗t , θt)− J−i(ℵ−i,t, θt)

+ δ
(
E
[
W−i,∞(θt+1, zt+1) | ℵ∗t , θt

]
− E

[
W−i,∞(θt+1, zt+1) | ℵ∗−i,t, θt

])
| θt
] (17)

B. Monetary Transfers

The basic idea behind the Clarke pivot rule is to make the
players internalize the externalities they impose on society
in each period. This can be achieved by designing, for each
player i, a monetary transfer policy pi,t : Θ → R (pi,∞ :
Θ → R) such that the resulting expected flow net utility
matches the flow marginal contribution:

p∗i,t(θt) := E [vi,t(α
∗
t (Zt, θt), θ0,t, θi,t)]−mi,t(θt) (18)

p∗i,∞(θt) := E [vi(α
∗
t (Zt, θt), θ0,t, θi,t)]−mi,∞(θt) (19)

Here the expectations are over the random variable Zt.
Observe that the transfers p∗i,t(θt) and p∗i,∞(θt) depend only
on the report θt and not on the entire public history ht. Let
M = {α∗,p∗} andM∞ = {α∗∞,p∗∞} denote the finite and
infinite horizon mechanism, respectively. Our first assertion
is that both mechanismsM andM∞ need not be subsidized.

Lemma 1: The mechanisms M and M∞ are weak
budget-balanced, i.e.

∑
i∈N pi,t(θt) ≥ 0 for all t and θt ∈ Θ.

Proof: We prove this for M, the argument for M∞ is
almost identical. For α′t, α

′
−i,t ∈ A, let ℵ′t = α′t(Zt, θt) and

ℵ′−i,t = α′−i,t(Zt, θ−i,t). By definition, α∗−i,t is an optimal
policy maximizing the expected social utility of all players
excluding player i. That is,

E
[
J−i,t(ℵ∗−i,t, θt) + E

[
W−i,t+1(θt+1, Zt+1) | ℵ∗−i,t, θt

]
| θt
]

≥ E
[
J−i,t(ℵ′t, θt) + E

[
W−i,t+1(θt+1, Zt+1) | ℵ′t, θt

]
| θt
]

(20)

for all α′t ∈ A, θt ∈ Θ and t ∈ {0, . . . , T − 1}. Using (16)
one can express the transfers p∗i,t in terms of the stage utilities
and the social continuation values:

p∗i,t(θt) = E
[
J−i,t(ℵ∗−i,t, θt)− J−i,t(ℵ∗t , θt)

+
(
E
[
W−i,t+1(θt+1, Zt+1)

∣∣ ℵ∗−i,t, θt]
− E

[
W−i,t+1(θt+1, Zt+1)

∣∣ ℵ∗t , θt]) ∣∣ θt]
(21)

In particular, for α′t = α∗t we conclude from (20) that
p∗i,t(θt) ≥ 0 for all θt ∈ Θ, i ∈ N and t < T .

C. Incentive Compatibility

Our main result is the following:
Theorem 1: The mechanismsM andM∞ are stage-wise

and periodic ex post incentive compatible, respectively.
Proof: Again we prove only the finite horizon case

M, as the argument for M∞ is essentially the same. We
are to show that truth-telling is incentive compatible in
expectation (w.r.t. Zt) for every player i ∈ N in every
period t ∈ {0, . . . , T − 1}, provided that all other players
report truthfully. By the principle of optimality, it suffices to
show that each player i in each period t incurs her marginal
contribution as her reward to go if she reports truthfully,
provided that all other players do. That is, we are to show
that, for all ri,t ∈ Θi, θ−i,t ∈ Θ−i and t ∈ {0, . . . , T − 1},

E
[
vi,t(α

∗
t (Zt, θt), θ0,t, θi,t)− p∗i,t(θt)

+ E
[
Mi,t+1(θt+1) | α∗t (Zt, θt), θt

]]
≥ E

[
vi,t(α

∗
t (Zt, ri,t, θ−i,t), θ0,t, θi,t)− p∗i,t(ri,t, θ−i,t)

+ E
[
Mi,t+1(θt+1) | α∗t (Zt, ri,t, θ−i,t), θt

]]
(22)

Let t ∈ {0, . . . , T − 1}, ri,t ∈ Θi and θ−i,t ∈ Θ−i be
arbitrary and denote by L(θt, t) and R(ri,t, θ−i,t, t) left and
right hand side of (22), respectively. The transfer p∗i,t was
constructed in (21) exactly so that L(θt, t) = Mi,t(θt) =
E [Wt(θt;Zt)−W−i,t(θt;Zt)]. Substituting p∗i,t from (21)
we can write R(ri,t, θ−i,t, t) after rearranging terms as

E
[
Jt(α

∗
t (Zt, ri,t, θ−i,t), θt)− J−i,t(α∗t (Zt, ri,t, θ−i,t), θt)

+
(
E
[
Wt+1(θt+1, Zt+1) | α∗t (Zt, ri,t, θ−i,t), θt

]
− E

[
W−i,t+1(θt+1, Zt+1) | α∗−i,t(Zt, θ−i,t), θt

]) ∣∣ θt]
Using the definition of α∗−i,t and W−i,t we get

R(ri,t, θ−i,t, t) = E
[
Jt(α

∗
t (Zt, ri,t, θt), θt)−W−i,t(θt;Zt)

+ E
[
Wt+1(θt+1, Zt+1) | α∗t (Zt, ri,t, θ−i,t), θt

]]
(23)

From (23) and the definitions of α∗t and Wt we conclude
that L(θt, t) ≥ R(ri,t, θ−i,t, t), i.e. that (22) holds.

D. Individual Rationality

Let A(N) : Z � A denote the correspondence parametriz-
ing the set of feasible allocations when N players participate
in the mechanism. In order to be able to show individual
rationality, we need two additional Assumptions.

Assumption 4: If N,M ∈ N with N ≤ M , then
A(N)(z) ⊆ A(M)(z) for all z ∈ Z.

Assumption 5: E[vi,t(α
∗
−i,t(Zt, θ−i,t), θ0,t, θi,t)] ≥ 0 for

all θt ∈ Θ and E[gi(θ0,T , θi,t) |α∗−i,t, θT−1] ≥ 0 for all
θT−1 ∈ Θ, for all i ∈ N and t < T < ∞. If T = ∞,
E[vi(α

∗
−i,∞(Zt, θ−i,t), θ0,t, θi,t)] ≥ 0, ∀ θt ∈ Θ and i ∈ N .

Assumption 4 is a type of “choice set monotonicity”. Intu-
itively, it says that removing agents from the mechanism will
never enlarge the coordinator’s decision set. Assumption 5
ensures that there are no negative externalities.
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Theorem 2: Suppose Assumptions 4 and 5 hold. Then the
mechanismsM andM∞ are stage-wise and periodic ex post
individually rational, respectively.

Proof: Again we prove only the case T <∞. We are to
show that Vi,t(hi,t) ≥ Oi,t(hi,t) for all hi,t ∈ Hi,t. Recall
from the proof of Theorem 2 that (by incentive compatibility)
Vi,t(hi,t) = E [Wt(θt;Zt)−W−i,t(θt;Zt)]. Therefore

Vi,t(hi,t)−Oi,t(hi,t)

= E
[∑T−1

s=t+1 Js(ℵ∗s, θs) +
∑N

i=1 gi(θ0,T , θi,T ) | θt
]

− E
[∑T−1

s=t+1 J−i,s(ℵ∗−i,s, θ−i,s)+
∑

j 6=i gj(θ0,T , θi,T ) | θt
]

− E
[∑T−1

s=t+1 vi,s(ℵ∗−i,s, θ0,s, θi,s) + gi(θ0,T , θi,T ) | θt
]

= E
[∑T−1

s=t+1 Js(ℵ∗s, θs) +
∑N

i=1 gi(θ0,T , θi,T ) | θt
]

− E
[∑T−1

s=t+1 Js(ℵ∗−i,s, θ−s) +
∑N

i=1 gi(θ0,T , θi,T ) | θt
]

which is nonnegative by Assumptions 4 and 5.
Note that Assumptions 4 and 5 are sufficient conditions, i.e.
individual rationality may also hold if they are not satisfied.

VI. IMPLEMENTATION CHALLENGES

A. Computational Complexity

In order to implement the mechanism from the previous
sections, the coordinator needs to be able to do the following:

1) Given a report rt and realization Zt = zt, determine the
socially optimal allocation α∗t (zt, rt) or α∗∞(zt, rt)

2) Compute the transfers p∗i,t or p∗i,∞ as a function of the
players’ reports rt

In the finite horizon case, the above tasks amount to solving
the stochastic optimal control problems (2) and (10) for
each i ∈ N and 0 ≤ t < T − 1. In principle, this can be
done by solving the dynamic programming recursion (4) with
terminal value functions WT (· ; ·) and W−i,T (· ; ·) given by
WT (θT ; zT ) =

∑N
i=1 gi(θ0,T , θi,T ) and W−i,T (θT ; zT ) =∑

j 6=i gj(θ0,T , θj,T ), respectively. Note though that in or-
der to compute the expectation in (21), the coordinator
not only needs to know the optimal allocation a∗(rt) =
arg maxa∈A(zt) Jt(at, rt) + E[Wt+1(rt+1; zt+1) | rt, at] but
the full optimal policy α∗t .

Depending on the parameters of the problem, i.e. the
players’ utility functions, the priors Fi(θi,0), FZt(zt), the
stochastic kernels Fi(θi,t+1; θ0,t, θi,t, at) and the charac-
teristics of the feasible allocation sets (described by the
correspondence A), solving these stochastic optimal control
problems is generally a very hard task. If Θ and Z are
finite, then the problem is a finite state Markov Decision
Process and thus tractable if the cardinality of Θ × Z is
sufficiently small. In general, however, there is little one can
say about computational tractability given our very general
model. These questions should be investigated with respect to
the particular application at hand, and is left for future work.
Finally, let us emphasize that computational complexity is
not a problem exclusive to our model, but one of the
fundamental problems in mechanism design [14].

B. Informational Requirements

Aside from purely computational considerations, another
potential problem with our mechanism is that it has very high
informational requirements. Specifically, among other things,
we assume that the players’ cost functions, the distributions
µZt of the random variables Zt as well as the priors
Fi(θi,0) and the dynamics Fi(θi,t+1; θ0,t, θi,t, at) are com-
mon knowledge. In many applications, these assumptions are
too restrictive. Again, this problem is not exclusive to our
approach, but characteristic of many optimal mechanisms.
Another issue with optimal mechanisms is that they are often
not “robust”. That is, they can be very sensitive to details
of the environment that will often not be fully known in
practice. “Robust Mechanism Design” [15] tries to relax the
informational requirements and design simpler mechanisms
that trade of optimality for robustness. The literature on
designing robust dynamic mechanisms is still small, one
contribution is the recent paper [16].

VII. EXAMPLE: DYNAMIC COMBINATORIAL
ALLOCATION OF RANDOM GOODS

In this section, we show how our mechanism may be
employed to implement a socially efficient allocation in a
problem of dynamically allocating random goods to a group
of players that have private valuations for bundles of items.
This can be seen as a combinatorial auction [17] in a dynamic
setting in which items arrive randomly over time5.

A. A Simple Model

Let Z be a finite set of items (“goods”) with ∅ ∈ Z, and let
µZ be a probability distribution over Z. In each period t, a
random item Zt ∈ Z is realized according to the distribution
µZ . For example, let Z = {∅, B, Y,H} with B = Barley,
Y = Yeast and H= Hops.

Let N be a set of N players (“producers”), each of which
has private valuations of all6 item bundles (i.e. all subsets
of Z). That is, player i’s type θi,t in period t is a vector
of non-negative valuations, one for each bundle b ∈ 2Z, so
Θi = R|2Z| for all i ∈ N . We assume that θi,t(∅) = 0
for all players i in all periods t. In our example, the type
θi,t(b) could represent the profit producer i can make in
period t when using the items in b as inputs. The items
can complement each other; in our example it is clear that
θi,t({B, Y,H})� θi,t({B}) + θi,t({Y }) + θi,t({H}).

Suppose that the valuations θi,t evolve over time, with
dynamics described by stochastic kernels Fi(θi,t+1; θi,t). A
deterministic part of Fi in our example describes discounting
over time, while the stochastic part could represent the effect
of the current weather on the quality of B, Y and H .

We assume that which items have previously been allo-
cated to the different players is public information. To this
end, let θ0,t ∈ ×N

i=12Z be the publicly observable state, so
that θ0,t(i) ⊂ Z is the set of items that have been allocated

5Note that this is different from dynamic implementations of combinato-
rial auctions – our setting is inherently dynamic.

6We could restrict our attention to a subclass of bundles in order to reduce
the dimension of the problem, but refrain from it here for simplicity.
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to player i prior to period t. Conditioned on a realization
zt ∈ Z of Zt, the one step dynamics of θ0,t are deterministic
and given by θ0,t+1(i) = θ0,t(i) ∪ ai,t, where at ∈ At =
A(zt) = {{zt, ∅, . . . }, {∅, zt, ∅, . . . , }, . . . , {∅, . . . , ∅, zt}} is
the allocation decision made by the mechanism in period t.
Note that each player can use at most one item of the same
type, and that at most a single item can be allocated in each
period, so ai,t 6= ∅ for at most one i ∈ N .

Consider a finite horizon setting with T <∞ and gi = vi
for all i ∈ N . In each period t, players receive a utility
vi(θ0,t, θi,t) = θi,t(θ0,t(i)) based on the items allocated to
them in previous periods. While the allocation ai,t does not
affect the stage utility vi in period t, it does affect the utilities
in subsequent periods through its effect on θ0,s(i) for s > t.

The reason why implementing the socially efficient al-
location for the above problem cannot be done naı̈vely
and requires the design of a mechanism is the same as
in the static auction case: players in general will have an
incentive to misreport their valuations θi,t for the different
item bundles in order to maximize their expected overall
utility. A static mechanism is not applicable because there
is inter-temporal coupling through the allocation decisions.
These are based on the players’ reported valuations, which in
turn depend on private information that arrives over time (as
described by the type dynamics Fi). The mechanism from [7]
is also not applicable, since it assumes the set of feasible
allocations At = A to be fixed and known a priori.

B. Implementing the Mechanism
The Bellman equation (4) for the social welfare maximiza-

tion for the above model reads

Wt(θt; zt) = max
at∈A(zt)

{∑N
i=1 vi(θ0,t, θi,t)

+
∑
z∈Z µZ(z)Eθi,t+1

[
Wt+1(θt+1;Zt+1) | θt, at

]} (24)

where WT (θT ; zT ) =
∑N

i=1 vi(θ0,T , θi,T ). Since both Z and
A(zt) are finite, the main challenge in (24) is the computation
of the expectation over the private types θi,t+1 (note that at
only affects θ0,t+1 in a deterministic way, but not θi,t+1).

Having computed W∞, for each zt ∈ Z the optimal
allocation α∗t (zt, θt) as a function of θt is given as the max-
imizer in (24). The value functions W−i,∞ defined in (10)
and the associated policies α∗−i,t(zt, θt) can be determined
analogously and then be used to compute the transfers

p∗i,t(θt) =
∑
z∈Z µZ(z)

{
∑
j 6=i
(
vi(α

∗
−i,t(θt, z), θt)− vi(α∗t (θt, z), θt)

)
+
∑
z′∈Z µZ(z

′)
[
Eθt+1

[
W−i,t+1(θt+1, z

′) |α∗−i,t(θt, z), θt
]

− Eθt+1

[
W−i,t+1(θt+1, z

′) |α∗i,t(θt, z), θt
]]}

With the optimal policies {α∗t }T−1
t=0 and transfers {p∗t }T−1

t=0

at hand, one can implement a dynamic direct revelation
mechanism as described in section IV. By design, the result-
ing mechanism is stage-wise ex post incentive compatible.
Recalling that vi ≥ 0, it is easy to verify that Assumptions 4
and 5 are satisfied, which means that the mechanism for this
problem is also stage-wise ex post individually rational.

VIII. CONCLUSION AND FUTURE WORK

In this paper we considered the problem of maximizing
the social welfare of a group of rational players with private
information in a dynamic setting with private values, in
which the feasible allocation sets are random. Our notion
of social welfare included utility for “the public” created by
allocation decisions. We have constructed efficient dynamic
direct revelation mechanisms for both the finite and infinite
horizon problem, which satisfy suitable notions of incentive-
compatibility and, under additional assumptions, individual
rationality. Moreover, we have shown that the mechanisms
are weak budget balanced. Finally, we illustrated how our
mechanisms may be applied to the problem of dynamically
allocating random goods to a group of players that have
private valuations for bundles of items.

A common theme in the design of optimal mechanisms,
the main issues that limit the use of our proposed mecha-
nisms in practice are their high computational complexity
and informational requirements. Going forward, we plan
to employ techniques from robust (dynamic) mechanism
design to construct simpler mechanisms that are easier to
implement, pose less restrictive assumptions on information
available to agents and coordinator, and are less sensitive to
changes of or uncertainties in the environment.
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